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1. We Assad that the middle surface of the bent plate lies in the plane 
of the complex variable z = x + iy in a finite multiply-connected region 
S, bounded by a totality of sufficiently mnooth closed curves Lj(j = 1, 
. . . . RI + 1) without comnon points; of these curves, let L 
external contour surrounding the internal boundaries Li(jn2 i 

be the 
. ..) ml. 

The entire contour of the region S is denoted by L, formed by the curves 
Ljtj = 1, . ..) m + 1); its circuit is made in a positive direction rela- 
tive to S. Further, by Sj ( finite for j f m + 1 and infinite for j = 
RI + 1) we denote a simply-connected region bounded by L. (j = 1, .*t, 
111 + 1). We denote a finite and simply-connected region LB unded by the 
external contour L.s, 1 by S 
the region Sj(j = 1, . . . . 

Let zj be an arbitrary fixed point lying in 
be an affix of a certain point on 

the curve L. (j = 1, . . . . ected as an origin of arc. For con- 
venience we'take as the origin of coordinates a point in S. 

lhe unknown deflection rcrl(x, y) of the middle surface of the plate may 
be written in the form 

Wl(2, y) = w (G Y) + wo (5, Y) (1.1) 

where toO(x, y) is some particular solution of the differential equation 
of bending, describing the effect of a normal force distributed according 
to some specified law; the new unknown m(x, yf is a biharmonic function 
represented in accordance with the Goursat formula in the form 

where+,(t) and$I(z) are certain analytic and generally multiple-valued 
functions in the multiply-connected region S. For the case in question, 
that of a supported edge of the plate, we shall have the following limiting 
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equation for determining the functions S&(Z) and $1,(z) on the contour L: 

Ret’ 1~~ (t) + & (t) -+ $1 (t)l = iI (s) (l-3) 

Re ((1 +A,) yl’ (t) + yl’ (t) + t” [CPI (t) t 41’ (t) + 91 (t)l> = f~ (s) (1.4) 

in which by the variable t is understood the corrplex coordinate of a 

running point on L, and the dots beside it denote differentiation with 

respect to the arc s; A, is a constant depending upon Poisson's ratio; 

and finally, fl(s) and f,(s) are certain given functions determined by 

the nature of the loading, which we shall consider to be continuous on L 
for the case of plate bending. 

Note f. Khalilov [l I has reduced the case of bending of a supported 

plate to a Fredholm integral equation in the case where the middle sur- 

face occupies a simply-connected region bounded by a contour of non-zero 

curvature. For the more general case of a multiply-connected region with- 

out the above restriction on boundary curvature but different in some 

respects from the usual treatment, the problem of the supported plate, 

including its reduction to a Fredholm equation, has been considered by 

Fridman in a different way [2 1. 

Kalandiia studied this same problem for a multiply-connected region 

in the usual way and reduced it to a singular integral equation; he has 

established its solvability [3 1 on the basis of comparatively recent 

methods for the investigation of such equations [ 4 1. 

In the first two articles, the Fredholm integral equation was presented 

in a structurally complex form; the kernel was given by certain quadra- 

tures not as a rule expressible by elementary functions, a fact which 

naturally limits the application of the equations. The Fredholm equation 

which we mean to propose for our problem is free from this objection. 

Its kernel is expressed by elementary functions; further, there is an 

additional property inherent in the equation which facilitates its 

practical application. By making use of modern computational techniques 

it would not be difficult, on the basis of the proposed equation, to 

arrive at a satisfactory evaluation of effects in a quantitative manner. 

Certain important specific problems may be studied with the help of this 

equation by reducing them to quasiregular infinite systems of equations. 

It seems to us that the present paper must be considered from just this 
point of view. We note that the solution for finite and for simply- 

connected regions, a classic example treated in a similar style, has been 

reported in reference [ 5 1. 

In place ofq$(z) and 4//1(z) in equations (1.3) and (1.4) we introduce 
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functions $(z) = ;cJ+,(z), q'~I(z) = i$l((z) and set* 

m+1 rn=l 

‘F (4 = 2 % (4* (i, Cz) = 2 43 tz> (1.5) 
j=l j=l 

where $,,+1(z) and +,,+1(z) are single-valued and regular in .the region 
q); any two of the remaining functions 4,(z) and $h(z) are analytic in- 
side L,(k = 1, . ..) JR). To the left-hand side of boundary condition (1.3) 
we add the operator 

t 

r (19, (I; t) = {(2S~)-’ Re itt’ Re &+I (0), (W + w&+,,+~ - (W + wo)t=aj) (l-6) 

taking the first or the second of the expressions in the bracket accord- 
ing to whether point t lies on the outside contour LI+ 1 or on one of the 
inside contours Li(j # m + l);** it is seen that on the internal bound- 
ary Lj the operator takes on a value equal to the difference of the 
values of I&C, y) at the points z = am+1 and z = aj. Both boundary con- 
ditions (1.3) and (1.4) are united into one limiting complex equation 

)\ [cp’ (t) - ‘P’(t)] + t’B,(t) r (.t> - t%. (q 7 (t) + I- (19, rt; t) = f(t) (1-V 

in which the notation 

7 (4 = c9 (4 - Q-m - (I, tt> 9 6, (t) = i + iv, fJ2 (t) = - i + tt” 

h = 2 + A0 f(t) = 2 Vi + if21 (1.8) 

has been introduced. 

The reader can convince himself that this modification of conditions 
(1.3) and (1.4) does not by any means involve any change in the postula- 
tion of the problem, as might be thought at first glance; the postulation 
not only remains unchaned in its original form but is appreciably simpli- 
fied for the process of solution. 

2. For the functions 4(z) and $(z) we take the following forms, which 
will be justified later: 

l The presence of a number of simple functions with single subscripts 
on the right-hand portion of equation (1.5) must not lead the reader 
astray by his relating this notation to that for the unknown function 
in (1.2). 

l * If it is more convenient, the integral of (W + u,,) taken along the arc 
of the curve Lk(k = 1, . . . . n + 1) may be substituted for (u + ~6)~~ a 
in equation (1.6). k 
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9 (2) = y(O) (z) + $j iAj (2. - zj) III (2 - zj) 
i=I 

;lj = I{& L, {w (1) 6, (t) + q(t) 6, (t)) & s (2.1) 
3 I 

$[(z) =;+(“)(z) - ~((i.flj~ + 23j) [ln(z-zzj) + $-:_I+ (1 + i)&) (2.2) 
j=1 3 3 

where the functions $J (O)(z) and \II(‘)(zl, analytic in the region S, are 

given by the formulas 

$O) (z) = \ {o (t) 0, (t) + o(t) O2 (tj} G (t, z) dt (2.3) 

$I@ (z) : \ (0 (1) 11 (t, 2) + o(t)T (t, z)} dl (2.4) 
L 

Here o(t) is the required density, and the functions introduced under 

the integral sign are such that 

G (t, 2) = {&. [-1 + In (1 - +)] , &l,, 111 (2 - t,) 

H (1, Z) = {?'(1)[G (t, 2) + aii Ej] + P(t) (& - Ej {)} 

T (t, z) = {T201(t) [G (1, 2) + -& q] -j- Q(t) (il; -Ej+ )) 

P(t) L= -& (iL? - t6, (t)), 
-- 

Q (t) = &ii (A7 - to, (t>> 

(2.5) 

(2.6) 

in which c . = 0 for j f m + 1 and c,, 1 = 1. The function G(t, tl, similar 

to that inI(1.61, is equal to the first expression in (2.5) if t varies 

On La+ 1 and to the second if t varies on the other Lj( j = 1, . . . , ml. 

The quantities A. B. and D. are certain functions depending upon o (t 1; 

the first was gi& in (2.13; the third is real, and for Bj and Dj we have 

in which the notation 

(24 

has been introduced. 
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We make a cut in the region S connecting the point a. on the internal 

boundary Lj with any point on the surrounding boundary t and not 

passing through the origin of coordinates. For this, the%kch ln(1 - 

z/t I is taken in (2.51, which reduces to zero for z = 0; the branch 

ln(z - t) for the variable t associated with Lj(j = 1, . . . , n) is deter- 

mined by fixing the argument of ln(z - a .) for the affix of z found on 

* either side of the cut connecting aj unt h the curve Lm+ 1. 

Certain other forms may be given to the functions 4(z) and y!~ (2) by 

virtue of (2.5) and (2.6), as follows: 

y (z) - ‘p* (2) + 5 [ilij (2 - Zj) + f-zj] 111 (z -.- Zj) (2.9) 
j=l 

q(j) ZZZ q (2) - i ((iL4jZ; + Zj) [Ill (2 - zj) + L] + i & 
z - zj 

(2.10) 
j=l -I 

In these equations g(z) is a function which is regular in the region S; 

it is determined by the integral of (2.3) in which G*(.t, z) must be sub- 

stituted for the function G(t, z 1; it takes on a value equal to G( t, z) 
for an affix of t varying along Lm+ 1 and for the t associated with 

Lj(j = 1, . . . . nr ) it has a value equal to 

G’ (t, 2) = &A 111 z--t 
’ - ‘j 

The function v(z) and its integral are also regular in the region S. 

For this sBme function $*(z) may be expressed as in (2.4) if, in place 

of H(t, z) and T(t, z), the corresponding quantities fP(t, z) and P(t, z) 
are substituted. For the latter, in turn, we may use formulas (2.6) by 

setting in them for G(t, z) + (4wA-1 and for (t - z1-l - Tit-’ as the 

multiplier for the P and Q functions the following quantities respectively: 

J+‘(hz)=(G(t,z)+&; &(lnf++~-)} 
(2.11) 

d(t,z)= 
i 

1 
A-+; A+-- 

2 -zj ) 

It is clear that the functions 4,(z) and IJJ (z) from (1.5) are deter- 

mined partly from each of the equalities (2. lf and (2.2) or from T2.9) 

and (2.101, which contain the integrals taken along the contour L, and 

also sums with additional operators for the index j = k. It is evident 

from the construction of (2.5) and (2.6) th’at it is necessary for 

&x+1 (0) = 0 (2.12) 

It is expedient, also, to introduce the functions q$ (0) (z), +Jo) (z) 

together with qSk*(z> and +k*(z) (k = 1, . . . , m + 1); each of these 

functions is expressed by the integrals (2.3) and (2.4) and by analogous 
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integrals taken along the curve L,. It is not difficult to convince one- 

self that the function I,!J~*<z> is of the order 0 [ (z - zk)-’ ] at infinity. 

We denote the expansions of the integrals of I/J (z ) and @i’(z > in terms 

of z by x(z) and X*(Z), along an arbitrary path between the origin of 

coordinates and the point z without intersecting the cut and without 

leaving the region S. Simple calculations give 

in which 

R’V, 2) = {- & [z + (t -2) In (1 - ;-)I , /,b [(z - t) III s + t 
A* (t, z) = { -- [In (1 - ;) + +j , -- [II, +$ - 111 .kjt 

‘lhe inidicated choice of branch for the logarithmic functions above 

makes it compulsory to consider the right hand part of (2.13) as vanish- 

ing for z = 0. ‘Ibe function x*(z) is formed from formulas similar to 

those for $*(z) if R* and A* are introduced into them in place of W* and 

u*. In addition, it may readily be discovered that 

l(Z) = x’(z) - 2 szj [a(t); 2, “jl (2.14) 

j--r 

in which, following the sumnation sign, 

Qj y_(!iljZj + f%j) Z{lIl (Z - Zj) _-- 11 + iDj [ln(Z-Zj) - IT1 (-- Zj)l (2.15) 

For w(x, y), after recalling equations (1.2), (2.1) and (2.2) and 

their connection with the last tvm equations, we obtain the formula 

2w (.t, y)=2w* (x, ?/)- 3 a,* (5, y; ZJ (Llc,) 
j ==I 

In this formula w*(x, yl is a biharauxric function equal to 

2w* (x, y) =-i {&* (2) 
-. 

- q* (2) + x* (2) - x* (z)l (“$17) 

and the value of the real operator Sj*(x, y; z j) is given by the relation 

Sj* = Aj&,j* $X,ZJ;Zj) + [12jS%j* (J,tJ;Zj) + fljfizj* (X,ZJ;Zj)J + flj&sj* (.r,/J:Z;) (2.18) 

in which, in turn 
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a,j* = - {[I 2 - Zj 1’ -- / Zj 1’1 III 12 - Zj I2 + (ZjZ $ ZjZ)} 

6,j*=ii[lnlZ-Zj/“- -lj, 6:tj* = In 12 - Zj j2;-- In 1 Zj j* 
(2.1!)) 

'Ihe integrals of equations (2.31, (2.41, (2.9) and f2.10>, as well as 
the nature of the functions, permit each of the quantities to(x, y) and 
w*(x, y) to be presented in identical form 

[WC& !/I; w*(r, ?.!)I = \ co(t) [Z(s; 5, y); z*cs; 2, Y)l t 
L 

where Z(s; x, y) and z*(s; n, y) are continuous functions of their vari- 
ables. We remark that w(n, y) and w*(x, y) consist of sumnations of 
w.(n, y) and 10.*(x, y) determined in a similar way, for example, to 46i(z) 
Ad \bj(z) in (i.5). 

The operator (1.6) proves to be dependent on the density o(t) just as 
do #(zf and $(z), and so it may be written as r fo (t), t,] ; we will 
adhere to this notation in the future. 

Note 1. It is easy to understand that the operator Dk/z - xk has been 
introduced into the second summation in the right-hand part of (2.2) in 
order to remove multiple-valued terms which appear in some cases in the 
expression for ID(X, y); this can be discerned from formula (2.10). At the 
same time it may not be wholly clear at first glance what induced the 
author to attach the operator iDI/ - Z~ to (2.2) while having introduced 
a single-valued sum in (2.15). The reason is that with this operator pre- 
sent it is easy in many cases (and even obligatory, please) to free the 
expansion of $k(x) in a circle at an infinitely remote point from a term 
in the sum having the inverse first power of z - .zk, Actually it is ex- 
tremely likely that by fixing the value of o(t) one may find a point zI 
inside Lk such that the coefficient of the inverse first power term in 
the sum added to (2.10) reduces to zero for j = h. The presence of such a 
fact would indicate that the omission of the operator iflk/t - zk from 
(2.2) imposes an excess of rigor and does not set correct limits on the 
function $k(~), and so leads to a loss of necessary generality in the ex- 
pression for it. The introduction of the operator into (2.2) removes this 
defect at least formally, and, as we shall see below. does in fact do so. 
It is not without interest for the reader to consider also that the said 
defect in the representation of t,$(x) may be completely taken care of by 
this very operator; we dwell on this because of the investigation of the 
Fredholm equation further on. We must suppose that there must exist many 
other operators apart from iDk/x - Z~ capable of fulfilling this assign- 
ment and of giving the expression for lGk(z) the required completeness. 
The operator we have chosen - whose very form partly prompts the nature 
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of the premises leading to it - is the most natural, and at the same time 
certainly the simplest, of all the possible operators. 

The exposition just set out bears an intuitive character and possesses 
no rigid basis; nevertheless it leads to an entirely correct idea, whose 
justification will later be corroborated by unquestionably substantial 
argustents having a direct relation to the problem in hand. 

3. In equations (2.1)‘ (2.2) and their first differentials, let z 
approach a certain point t,, on the contour L. The limiting values of 
$(t,), @(to) and $(t,) are obtained from the boundary condition (1.7). 
Then, after performing certain calculations requiring a series of trans- 
formations, for the density o(t) we obtain a Fredholm integral equation 

@(to) + i.w(t)M (t, to) +w(t) N(t, to)] dt + 0 to(t), r,I = I&) (3.1) 
L 

where the kernels M(t, t,) and N(t, t,) are continuous functions of both 
t and t0 and are respectively equal to 

M (t, to) = u (t, to) + h (tl to) $ In t$f + *I + q (t, to) 
0 

N (t, to) = v (t, to) + I (t, to) &In s + * + r (t, to) 
(3.2) 

Here the quantities on the right-hand side of these equations are found 
from the formulas 

-- 
qt, to) = t;b, (to)a (t, to)- t;t’2e2(tO)bft, to) 

-- 

b (t, z) = #a (t, z) 

h (t, to) = & {--- f&3 + t,‘%-@ij Lt’ - d (t, 4Jl -to32 (to) c (h @I 

- _-. 

1 (t, to) = -&; {- b, (t) + to’b, (h,) If -c (t, &)I - &,32 (4,) d’m1,)) 

-- -- 

Iis is evident from (3.3), the function p(t, t,) reduces to zero for 
* t= to, hence the third term in the sum of (3.2) will be a limiting 
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function of t and t0 on the assumption that the contour L has a diffe- 
rentiable curvature. Furthermore, the operator on the left-hand side of 
equation (3.2) is 

j=l 

in which new notation is used in the following sense: 

-- 
aj (GJ) = h [2 + ln (to - Zj) + fn (to - Zj)l + to’@, (&I) qj f-f,, Zj) + 

+ to*% (to) rlj (to, Zj) _- 
K [o(t), to] = Et,‘6, (to) -I&$ (to) + I? [o(t), $01, Rj (to) = Fj _$L- 

-2 
f 

7/j (2, Zj) = 

i 
(2 - Zj) [ln (2 -Zj) + In (Z - Zj)] - _ z’:j + Z} (3.5) 

4. We now consider the solvability of the integral equation (3.1). 
First we establish an important property of equation (3.1). We integrate 
the limiting condition (1.3) with its associated operator l?[o(t), t,] 
(the same as the real part of condition (1.7) ) term by term along the 
arc of the curve Lj(j = 1, 2, . . . . R+ 1). Since the left-hand side of 
formula (1.3) exclusive of this operator appears as a derivative with 
repsect to the arc of the single-valued function wfn, y) in the enclosed 
region S, we shall have 

Re ~pk+~ (0) = 0 on JL+l, tw + w3)t=o,+l - (w + Wi&lj = 0 
on Lj(i=l, . . ..m) (4-j) 

Any solution of the integral equation (3.1) necessarily satisfies 
(4.1); in other mrds, the transformed conditions (1.3) and (1.4) remain 
equivalent to their original form thanks to the operator introduced, but 
now meet the requirements of a problem which demands strict compliance 
with the relations in (4.1). 

Note 1. A clarification of the essential significance of (4.1) is easy. 

In place of the given boundary values of the function e(t, y) as usually 
written, we take values of its derivative along the arc L in accordance 
with (1.3). A siailar substitution for one of the conditions of the 
problem leads to a solution in a finite sum satisfying the boundary values 
of U(X, y) with ah accuracy up to a certain constant on each of the 
curves Lj(j = 1. . . . . a+ 1); these constants, generally speaking, differ 
from one another ou different sections of the curves Lj(j = 1, . . . . a + I); 
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this greatly complicates the process of arriving at a solution to the 
point of completion - a process arising out of layers of operations both 
cumbersome and difficult. The very solution itself is as a rule not al- 
ways acceptable for use. But thanks to the relations (4.1). particularly 
those between the constants, the complications disappear. The function 
W(X, y) which may be found in a given case will differ from the function 
sought by a constant on the various Lj curves which make up the complete 
boundary L. Consequently the function will differ in the region S from 
the function sought by the same constant. The solution itself will be 
free from the exceptions found in other work, which sometimes bristles 
with formidable difficulties. (In order to avoid misunderstanding, we 
feel it necessary to make the reservation that we are fundamentally 
thinking of the calculational aspect of the problem.1 

We now suppose that the homgeneous (for f(t) = 0) integral equation 
(3.1) has a certain nontrivial solution o,(t). Corresponding to this 
value of density, the functions (2.11, (2.21, (2.31, (2.9) and (2.101, as 
well as those entering into the functionals A., B. and D., are given zero 
subscripts. We introduce r$ .(z), $O.(z), q5 .('*kzJ, 
and +$.*(z), expressible il'sums like (1.53: 

~~.(~')(z)~ #oj'(z) 

4 

correspon lng to the func- !Y 
tions &I, . . . . t/!%O*(z); each of the last two pairs is detezmined in the 
corresponding field of the integrals (2.3) and (2.4) situated along the 
curve L, snd supplemented by additional terns for j = k. Finally we write 
the zero subscript on the bihaxmoaic functions in (2.16) and (2.17). 

'Ihe bihamonic function z+,(z, y) mentioned previously in conuection 
with (4.1) takes on the same constant value on all curves Lj(j = 1, . . . . 
m + 1) and also satisfies the homogeneous condition 71.7). It is not 
difficult to establish that tq,(x, y) = constant everywhere in the region 
S on the basis of the integral formula for biharmonic functions [ll 

C[ WH (w) - 
i 

zG(w)]ds = 

= - 
\s 
{Ye + (1 - v> ((~xx)~ + (q,#+ 2 (ev,)21)dzdy 

‘s 
where Y is Poisson's ratio, Gfm) coincides with the left-hand side of 
(1.4) up tp a constant multiplier, and where 

dAw d 
v4=~+(1--)+wx” cos29 + (wVy -wX,)cos9sin*] 

From this we arrive at the conclusion that 

To(z) = kz +C, $ofzI = -C (4.2) 

where k is a certain real constant and C a complex constant. From the 
last equations we get at once that A T = Boj = 0 Cj = 1, . . . . ml. Con- 
sequently, the functions +u(z), &r,(s!f and at the same time the functions 
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+,(O)(z), +o(o)(z), $o*(z) and ,I,*(z), are regular in the region S. E3y 

taking this into account and operating on the principle of analytic con- 

tinuation we obtain 

,r '?,,, m., 1 (r.) = Jcz + C, $,I, ,n+, (z) = -.- c’, yes (z) = qol (z) =0 

(i = 1 , .) I!/) (4.3) 

of which the first two equations hold good inside Ln+ 1 and the other two 

outside Lj. We find, upon returning to (2.1)-(2.4), (2.12) and to the 

first equation of (4.1), that 

By letting z + m in formula (2.10) relating lb0 .(z) to + .*(z), 

that D 0 Cj = 1, 
01 

we find 

Oj = . . . . m). Thus, in the equkions for the functionals 

there have been evaluated 

A,j = 1&j = J!I,, = 0 (; =- 1, . . .) n1) (4.3 

Note 2. By virtue of these relations, IP~(X, y) and I~~*(z, y) coincide, 

and the functions moj(x, y) = 

d x2 + y2). 

IP~~*(x, y) vanish at infinity as R-l(R = 

Therefore the curvilinear integral along the contour Lj of the 

harmonic generating function b woj reduces to zero. 

We introduce the functions I and cl(t) on the contour L, which take 

on the following values on each of the curves Lj(j = 1, . . . . m + 1): 

x(1) = xj (1), xj (1) = xj* (1)- 2ikj (E -IS), xj (aJ = - 2ihaj (E - Ej 

Xj* (1) = .’ [O (1) 0, (1) + 0 (1) 0, (t)] dt, 
s 

xj* (nJ = 0 (4.6) 
(1 j 

I" (!) = [lj (t); - pj (l) = - xqc 
-__ ___ - 

)+ ([kc’--lO,(q]~,(t)$- [)~t’--162(~)]wo(l)) 

while the functionals have values 

7 

n = &A s 

%.+:Wd, 
-7 X,_cldt 

1 
]+& \ 

1 
ht1 

. 
hl+1 

It is at once apparent that as a result of the last equation in (4.4) 

or the second in (4.5), the function ad is single-valued on the curve 

L.. With these equations in mind, expressions (2.1) and (2.2) are ob- 

t'ained in the form 
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by employing simple 
2 lies in S.) 

transformations and integration by parts. (Ihe point 

It is clear from (4.3) and the first two equations of (4.4) that each 

of the functions mitt) and pi(t) is analytically continuous and regular 

in a corresponding simply-connected region S bounded by L (j = 1, 

(z3 

..*, 
m + 1); of these, us+ 1 (z) + 2ih (A + B- El andP,+l vanish at in- 

finitely remote parts of the region Ss, . We differentiate the first of 

relations (4.6) with respect to t and so ve 1 for o,,(t), thereby obtaining 

00 tl) = 46 {% (t) % Cl) - e2 (l) xj’ (t)> onLj(j=l, . . ..m+l) (4.8) 

In this equation we set o,(t) = v,(‘)(S) + iv, (‘)tS) and separate into 
real and imaginary parts, with the result that 

v1(O) (8) = b+ [q’ (t) - Xj’ (ql, Va(‘) (S) = - + [Xj’ (t) + Xj’ (I!)] (4.9) 

By introduction of this value of o,(t) into the second formula of (4.6) 

we find, after elementary calculations, 

- - 
Xj (t) - 'Xj' (t) -i*j (t) E $$ [Xj' (t) - %j’o] (4.10) 

Since the functions K .(z) and y .(z) are continuous on the curve L . 
(taken as sufficiently koth), the kight-hand side of (4.1), must be ‘so 

too, in spite of the possibility of the denominator reducing to zero at 

certain points on Li. Multiply (4. IO) by the quantity t s,(t) and its 

conjugate by t 8,ft ) , and subtract one from the other term by term. As 

a result we obtain 

..- 
h [Xj’ (t) - xj’ (tjl + t’Ql (l)rj(t) - t’0, (t)s) = 0 

where by analogy with (1.8) 

rj (t) = Kj (1) - txj) -- t*j (t) 

(4.11) 

Formula (4.11) coincides essentially with the homogeneous boundary con- 

dition (1.7) on the curve Lj. In accordance with the Goursat formula we 
construct the biharmonic function 

2 

2oj (z, y)=:-i(Zxj (z) - rxj (z) + ?j (z) A’c~ (z)), Tj (z) = ’ pj (z) dz (4.22) 
s 

in the region S j. It evidently satisfies the conditions 

aa. 
-’ 5 0 
as .’ 

G (oj) = 0 on Lj (j = 1, . . ., tn. f 1) (4.13) 
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It is not difficult to imagine that at an infinitely remote part of the 

region Sn, 1 

the relation 

the behavior of the function un+ ,(x, y) is described by 

where urn+ 1 *(x, y> is a limiting biharmonic function, I) 

certain real and complex constants (the function rnr+ 1 

tain a term of the form D.+ 1 In z, else it would acquire an increment 
during its circuit of the contour La+ 1 and would not maintain its con- 
stant value). For the given conditions it is easy to establish that 

CT~+~(X, y) must b e identically equal to a constant everywhere outside 

L ; this requires the equality K~+;(z) = pI+l(z) = 0; it follows 

afsfo'that A = B = 0. 

By similar reasoning, 

equations 

recalling that rcj(aj! = 0, we find that the 

Xi(Z)=: kj(Z-Uj), Pj (z) = O (i= 1, . . .) m) (4.15) 

hold good in the region SjS 

the first of equations (4.5) 

where the kj are certain real constants; from 

we see that these constants must be zero. 

Thus, all the functions 

Xj (2) = pj (2) = 0 (i - 1, . . ., m f 1) (4.16) 

By consideration along with (4.9) of a relation obtained from the 

second of the formulas in (4.6) and from (4.161, we find that 

(ALG”) VI(O) (s) - $0) (s) = 0 (4.17) 

and at once conclude that I+ is necessarily zero. 

lhus, the homogeneous equation (3.1) is always uniquely solvable. 

Upon determination of the density o(t), we find the functions #S(Z) and 

I/J(Z ) from formulas (2.1) and (2.2). It is possible that the W(X, y) ob- 

tained from them will differ from the function required by a certain 

constant value. E?y making the appropriate correction the required solution 

to the problem is obtained. 

Note 3. We remark that in equation (4.17) we necessarily resort to 

appropriate junctions (for smoothness) with contiguous arcs, should any 

of the curves Lj consist of rectilinear parts. 

Note 4. The removal of iDO ./z - zj from equation (2.2) leads to the 
conclusion that in this case !)oj will, generally speaking, be different 

from zero as a result of the vanishing of the functional terms in 1~~~~2); 

evidently, instead of &,jo(t) = 0. we have the relation 
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~$~j(“) (z) + D,j / Z - Zj r= 0 

the reasoning and the conclusions then lose force in certain essential 
particulars. Indeed. the Fredhola equation will not be solvable with this 
change in viewpoint. The attraction of the operator iDj/z - zj, as we 
have seen, is that it corrects the position in the desired direction. 

Note 5. The problem considered here belongs to one of the most diffi- 
cult branches of the theory of elasticity. There is therefore a tendency 
in this category of research towards the greatest generality, along with 
improvement and simplification of the methods of investigation. In the 
articles referred to [ 1, 2 I, the methods employed were different, at 
least in the first stages of the investigation, for a wide variety of 
problems in potential theory and elasticity theory. It is a pity that the 
application of such methods does not always lead to relatively simple 
results. In reference [ 3 1, simple expressions were taken for the unknown 
functions. Nevertheless, not being especially adapted to the problem in 
the sense as used here, they led the author to a system of singular inte- 
gral equations belonging to a class for which satisfactory methods have 
not been developed. In spite of all this, it is apparent that the value 
of these researches has by no means been exhausted. Even now they all 
possess interest, each with its own point of view; and there is no doubt 
but that their significance and that of the present work will grow with 
the development of effective methods of solving integral equations. 

The following interesting circumstance deserves mention, among other 
things. One may study certain particular problems by the integro-diffe- 
rential equations of references 1 and 2 by using elementary kernels (up 
to their transformation into Fredholm equations) and by searching for the 
unknown density in the form of a complex Fourier series; this leads to an 
infinite system of linear equation6 This remark, in all probability, 
also applies to E 3 1. 

We are far from thinking that the solution to the problem in the 
present paper is the most simple of all possible solutions, including 
those which may be obtained by a reduction to a Fredholm equation or by 
any other means. At the same time we are inclined to think that another 
Fredholm equation for the problem with enough distinguishing relations 
and useful features for it to be clearly preferable to (3.1) can hardly 
be constructed. 

5. We dwell briefly on the case where the region S is infinite and 
bounded by a contour L consisting of a totality of curves Lj(j = 1, . . . , 

Ml. In this case it is preferable to pass over (2.1) and (2.2) and to 
start with (2.9) and (2.10) as a basis. We assume that at an infinitely 
remote part of the region S the biharmonic function is 
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w(z, y)=ZJz+B~$DlnR+... (5.1) 

where Bis a complex and D a real constant, and where the multiple dots 

signify a limited summation in which the nth derivative is of order R-“. 

In order for the behavior of w(x, y) as described in (5.1) to be realized, 

it is necessary to set 

A,=-x’Ai, B, = 2’ [i Aj (zj - z,J - Bj] (5.2) 
j=l j=l 

where k is a certain arbitrary fixed number from the series j = 1, . . . . II 

and where the prime on the summation symbol indicates a passage to the 

case j = k. In this connection, formulas (2.9) and (2.10) may take another 

form which displays their properties more prominently. Further, by in- 

cluding an additive function Bk (in agreement with (2.711, and by taking 

expressions in the form of sums as in the second terms of (2.9), (2.10) 

and (2.11). we shall have 

m 

Q(Z) = ‘p* (z) + 2 [iAj (z - zj) + Bj] In z + B, 

j=l k 

$ (2) = ‘.$* (Z) - i {(‘AjZj + Bj) [ln 3 + A - L] + 

j=l 
1 z-Zk z - zj z - Zk 

(5.3) 

“i 
i - 1 

(5.4) 
z - zj 

The primes on the summation signs have been omitted in these equations 

since the summation automatically drops out for j = k. It is seen from 

(5.3) and (5.4) that as z goes to infinity the function @z) is bounded 
-1 and $(z) decreases according to the modulus of order z . In formula 

(2.16) for w(x, y) the values of 8ij l and 6 .* 
21 

will depend upon the index 

k and are respectively equal to 

iHln 

The operator r [o (t), to 1 must now be set equal 

1 !a (f), tul = {[w + ~.ol~=,~ - 1~ + ~~~~~~~ on 'j( i#k); 

z-z. 2 
I .- 

z - Zk 

to 

Ak on Lk} (5.5) 

is distinction from (1.6). and in which the functional Ak is taken to be 

the same as in (2.1). It is not difficult to convince oneself that the 

integral formula preceding (4.2) holds good also for an infinite region 

S for the conditions of (5.2). The integral equation for the density 

o ( t) is somewhat different in this case from (3.1); it is easily written 

starting from (5.3) and (5.4). Just as in (3.1). it always has a unique 

solution, From the determination of o(t), we find ui(r, y) acquiring a 

constant value on all Lj(j = 1, . . . . I). Subtraction of this constant 
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value gives the required solution to the problem. 

Note I. The problem of the determination of the biharmonic function 

has, generally speaking, no solution for conditions at infinity more 
restricted than (5.1). In fact, let there be another solution to the 
problem for the case where 6 and D are not zero at the same time for any 

given f(t). The biharmonic function consisting of the difference of these 

two solutions satisfies the homogeneous conditions (1.3) and (1.4) and 

for large 1 z [ has the same order as (5.1). We conclude from this that the 

function is identically equal to a constant; this signifies that the 

quantities and D must reduce to zero. which is impossible. 

If P(X, y) possesses at infinity a higher order than in (5.1). then 

additional terms with singularities higher than those in (5.11 must in- 

variably be given. 

Note 2. We assume that the normal load q(x, y) acting on the bent 

plate is distributed over a certain area fl, understood to be a finite 

part of the region S. In this case a particular solution of the diffe- 

rential equation of bonding which vanishes at infinity may be taken as 

i 
- wo (SJ/) = i&$J q (5, q) rs In rdR + AhlCo)r,,? In r0 + (2 ln r. + 1) [Ad(O) + AI(~) (Z-KC,)+ 

n 

(2) / x - 53. 2 
+@ (Y - ~011 + I,1 

* (z - 2.“) (Y - Y") 
i--y- + $2) roz 

+ A2,2(2) (y) 

where D is the cylindrical stiffness. Here the point M(r,,, yO) lies out- 

side the region S, and 

Al(O) zzz - -& \ q (E, ?)dfi, A*(O) zz - -& - 
* \ q (t-9 ‘11 P~‘(E, ‘i) da 

h h 

Arc’) = & 
s 

q (5, rl) (5 - ~0) da, AZ(l) z & s q (5, ‘1) (? - ~0) dfl 
R n 

A, 1(2) = - -& 
1 

\ q (5, ?) (4 - soI2 da, 

h 

A$) = -& 
I; 

r. = 1/F-- so)‘+(y - yJs 

q (5, ‘~1 (L- 10) (? -y&Q 
II 

A2 2(2) = - --& ' 
\ 

PO = 1/K---J" + (3 -YJ2 
4 (4, '11 h - YoF~Q 

h 

Note 3. A suitable method, well tested in its applications to a wide 

range of problems in elasticity theory [ 61 , may be demonstrated for a 

certain shape of the region S. For example, let the region S be an 

eccentric ring bounded by circles Lj of radius R.. and with centers at 

zj( j = 1. 2). The boundary condition (1.7) for L t e functions @ (11 and 

r/r l (z) for this case, to be introduced into formulas (2.9) and (2.10). 

is written as 
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h [p (E)-p (t)]-(1 + Rj_l& t-2. 

Y’ (t)-(l-Rj-‘)~~(t)PJ* (t) (5.6) 
I f 

where the sense of y*(t) is apparent; quantities containing multiplying 

parameters A,, B, and D1 are related to the function f’(t). 

Proceeding as in reference f 6 I, we introduce an auxiliary function 
o*f t) on the internal circumference L specified by the relation 

x [cp” (t) + o”(t)l - (1 + RI-‘) & rl* it) + (1 - HI--‘) -y q* (l) = 2w* (1) (5.7) 

in which 

‘I* (t) = ‘p’ (4 + W’ W + VT) 

By successively adding and subtracting (5.6) and {5.7), term by term, 
the following relation 

is obtained. which holds simultaneously for the upper and the lower signs. 

By excluding first p(t) and then q!!(t) from these, we are led to the 

formulas 

1 -2~+(a-2) * I cp” (4 - $ +* (t) = G’ (t) 

in which the right-band members are: 

t Fe (4; YG- (t)]=;{(WG-‘)[w* (t) ++P (t)] +(I TRt-‘)[w’--$l’-rt)]} 

Here the upper and lower signs appearing in the expression on the 
right relate respectively to the first and.the second of the functions 
on the left. Each of the functions o*(t) and f*(t) can be written ex- 
pediently in the form of a complex Fourier series, in powers of t - a1. 
Further, we introduce the following functions which are regular in the 
region S: 

Ip’ (%) + kg’ (2) - & \ E dt 

LI 

x’ (z) = [- 2 -$- + (a - 2) -& 
I 

‘p*’ (z) - + 9’ (z) - & \ 3 dt. 

Ll 
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They will be analytically continuous and regular inside the circum- 

ference of L2. Considering w*(t) as conditionally given, we find the 

functions 6*(z) and x*(z) from the limiting equation on the external 

circumference. By then passing to the condition (5.7) on L1, we obtain an 

infinite system of linear equations for the unknown coefficients in the 

expansion of o* (t); it is readily established that this system will be 

quasiregular for any region shape. By solving this system and so deter- 

mining 0* ( t), we are then able to write the expression for the unknown 

functions. 

Note 4. Fridman has drawn attention to the analogy between the above 

problem and the plane problem of the theory of elasticity for given 

boundary values of the normal components of the vector displacement and 

the tangential component of the stress vector. This problem was considered 

in reference [7 I for the case of finite simply-connected regions. The 

limiting equation there presented may be transformed into 

-. .- _- 
(x - 1) [rp’ (1) - 9’ (1)1 - fozyt) Y (1) + t’Ul(t) Y (1) = f (q 

Here p and K are elastic constants, and 

Y (9 = WJ (1) + 6m+ nc I (l) = - 41* [ rn + i (2 + T/21”)] (5.9) 

in which v,, is the normal component of the displacement vector and T is 

the tangential component of the stress vector. A comparison of these 

equations with (1.7) at once confirms the correctness of Fridman’s ob- 

servation. 

The functions $J(z) and I/J(Z) for a finite multiply-connected region 6 

may be taken in the form 

-. 
‘p (2) = \ (w (i) 61 (t) + w (l)O, (t)) c (L, z) & 

L 

JIM= \ ‘(0 (UI-I (t, 

(5.10) 

2) + 03 (1) T (r, 2) W 
L 

following the above analogy, in which, without going into detail, neither 

of the curves Lj is considered to be a circle. 

The functi&s G( t, z). H(t, Z) and T( t, Z) are more general than in 

(2.5) and (2.6) and are given by the formulas 
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_- 
T (t, z) = ~1.~ 0, (1) 

[ 

- G (t, P) + sj 4x(x’_ 1J ]+Q(t)[&-cjf] 

1 _- 1 
P(r)= 4x(K-_ 1) I(% - i)T+ + t 81 (Ul, 

_- 
Q(t) = 4n(x_-1) I@-$)? +th(t)l 

in which l . means the same as before. BY the introduction of (5.10) into 
the boundary condition (5.8). we obtain a Fredholm integral equation which 

is uniquely solvable for the density o(t). 

When in this case the mult’iply-connected region S is infinite, it is 
natural to consider the principal vector of the external forces acting on 
the region bounded by the curves Lj(j = 1, , . . , I) as known. We set 

Q (2) = B In (2 - zk) + ‘Pi (z), J, (2) = -- xi? In (2 - zk) + & (2) (5.11) 

in which the 
are equal to 

functions C&,(Z) and tfrOft), single-valued in the region S, 

$0 (2) = \ (a (t) H (t, 2) + ~(1) T (t, 2)) dt f x (2 Ej) In (Z - zk) 
L /=l 

In these formulas the index k is a certain number from the series 
j = 1, . . . . I and the constant B is 

i 
B = 2xi (1 + x) (X + W 

where X + iY is the principal stress vector at an infinitely remote part 
of the plane. We may convince ourselves that $9 (z) = Bk and that $9 (t) = 0 
by considering a homogeneous system of equations containing quantities 
with the constant B as a multiplier, as well as free terms. We find that 
Bk = 0 from the condition that the normal component of the displacement 
reduces to zero on the contour L, and, also that #9(z) = 0. The rest of 
the proof of solvability follows just as above. 
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